

Midterm Study Guide

وحارس البكالوريا BACCALAUREATE SCHOOLS

Mid-First Semester Examination

Academic Year 2024-2025

Subject: Chemist	ry		
Grade 9			
Ms. Amani Khalifeh			
Content: Experience Chemistry			
Storyline 1: Atoms, Elements, and Molecules			
☐ Investig	gation 1: Atomic Structure		
-	Experience 1: The Particle Nature of Matter		
-	Experience 2: Modeling Atoms		
-	Experience 3: Atomic Emission Spectra and the Bohr Model		
-	Experience 4: Modern Atomic Theory		
-	Experience 5: Electrons in Atoms		
☐ Investigation 2: The Periodic Table			
-	Experience 1: The Periodic Table: An Overview		
_	Experience 2: The Periodic Table and Atomic Structure		

Experience 3: Periodic Trends

Materials Included

Chapter	Lesson	Pages
	1- The Particle Nature of Matter 2- Modeling Atoms	
Atomic Structure	3- Atomic Emission Spectra and the Bohr Model	
	4- Modern Atomic Theory 5- Electrons in Atoms	
	1- The Periodic Table: An Overview	
The Periodic Table	2- The Periodic Table and Atomic Structure	
	3- Periodic Trends	

Please study the material listed in the table above with a focus on the points below.

Storyline 1: Atoms, Elements, and Molecules

Investigation 1: Atomic Structure

Lesson 1: The Particle Nature of Matter

- Investigate and compare various properties of elements.
- Develop models to describe the atomic composition of simple molecules.
- Use particle-level models to explain interactions of energy and matter within a system.
- Use evidence to determine whether a physical or chemical change has occurred.

Lesson 2: Modeling Atoms

- Describe atomic structure using a model of the atom that includes protons, neutrons, and electrons.
- Compare and contrast atoms of different elements and isotopes of the same element.
- Calculate the atomic mass of an element given isotope data.

Lesson 3: Atomic Emission Spectra and the Bohr Model

- Develop and use Bohr models for atoms, illustrating electron energy levels and the placement of electrons within those levels.
- Use the Bohr model to explain why elements have unique atomic emission spectra.
- Relate the spectra of elements to the structure of their atoms, particularly the patterns of electrons and changes in their energy.

Lesson 4: Modern Atomic Theory

- Investigate how the quantum mechanical nature of the electron gave rise to modern atomic orbital theory.
- Evaluate how the quantum mechanical nature of the electron can be used to refine models of the atom.

Lesson 5: Electrons in Atoms

- Predict the electron configuration of atoms using the periodic table as a model.
- Use electron dot structures to represent an atom's valence electrons.

Investigation 2: The Periodic Table

Lesson 1: The Periodic Table: An Overview

- Describe how elements in the periodic table are arranged by the numbers of protons in atoms.
- Identify how the arrangement of the main groups of the periodic table reflects the patterns of outermost electrons.
- Explain how the position of an element in the table can be used to predict some of its chemical properties.

Lesson 2: The Periodic Table and Atomic Structure

- Describe how electron configuration gives rise to trends in the periodic table.
- Explain how the periodic table can be used to predict electron configuration of an element.
- Use Coulomb's law to explain effective nuclear charge and why the positive charge exerted by an atomic nucleus is not equal to the charge of its protons.
- Explain patterns of effective nuclear charge across a period of main group elements.

Lesson 3: Periodic Trends

- Investigate and explain reactivity patterns in the periodic table using concepts of ionization energy, net effective charge, and atomic radius.
- Use models of elements to explain the formation of ions.
- Use periodic trends to explain some chemical properties of elements.

Atomic Structure

The Particle Nature of Matter

Lesson 1

- A chemist is conducting an experiment on a system. At the beginning of the experiment, the chemist wants
 to determine the temperature of the system. The system has a definite volume but no definite shape.
 Which of the following is most likely also true for the system?
 - a. The molecules in the system have less kinetic energy than a solid.
 - b. The molecules in the system have more kinetic energy than a solid.
 - c. The molecules are held together by stronger attractive forces than a solid.
 - d. Heat flow into the system would eventually cause it to have a definite shape.
- 2. Which of the following provides the best scientific explanation as to why the things classified as energy are not also classified as matter?
 - a. The things classified as matter are only used to generate energy.
 - b. Energy makes matter move, and the things classified as energy only make matter move.

Ground State

d. Outermost State

محارس البكالوريا BACCALAUREATE SCHOOLS

c.	You cannot hold the things classified as energy, so that must mean they cannot be classified as
	matter.

d.	All matter has mass and occupies space, and the things classified as energy do not have mass and
	do not take up space.

Modeling Atoms				
Lesson 2				
1.	1. How many neutrons are there in 226Ra?			
	a.	88	c.	226
	b.	138	d.	314
2. Which of the following represents a pair of isotopes?				
	a.	Ca+2 ,Be+2		
	b.	12C, 14C		
	c.	Fe+2 , Fe+3		
	d.	7N, 8O		
Atomic Emission Spectra and the Bohr Model				
Lesson 3				
1.	1. If the hydrogen atom emits red, blue-green, blue, and violet light, how many energy levels does it have in the visible region of the spectrum?			
	a.	3	c.	5
	b.	4	d.	6
2.	What is	the lowest possible energy level that an electron can occu	ру?	
	a.	Excited State		
	b.	Fundamental State		

محارس البكالوريا BACCALAUREATE SCHOOLS

Modern Atomic Theory

Lesson 4

- 1. Which atomic model uses atomic orbitals to describe the probable location of any electron in a three-dimensional space?
 - a. The cubic model
 - b. The plum-pudding model
 - c. The planetary model
 - d. The quantum mechanical model
- 2. The electron shell model of an atom has three main components: the energy shell, the subshell, and the orbital. Which of the following represent the correct arrangement from the lowest to highest maximum capacity to hold electrons?
 - a. orbitals < energy shell < subshell
 - b. energy shell < orbitals < subshell
 - c. subshell < orbitals < energy shell
 - d. orbitals < subshell < energy shell

Electrons in Atoms

Lesson 5

- 1. The atomic number of an element is 15. What is the likely arrangement of the valence and core electrons in a neutral atom of this element?
 - a. There are 3 valence electrons and 12 core electrons.
 - b. There are 4 valence electrons and 11 core electrons.
 - c. There are 5 valence electrons and 10 core electrons.
 - d. There are 6 valence electrons and 9 core electrons.
- 2. Which of the following descriptions of the electron dot structure corresponds to an element in the s block?
 - a. Has three unpaired dots
 - b. Has an unpaired dot
 - c. Has two pairs of dots and two unpaired dots
 - d. Has three pairs of dots and an unpaired dot

The Periodic Table

The Periodic Table: An Overview

Lesson 1

- 1. In the periodic table hydrogen is placed and Group 1A and helium is placed in Group 8A. The most likely reason for this is:
 - a. Hydrogen has one outer shell electron and helium has a full outer shell of electrons.
 - b. Hydrogen has one outer shell electron and helium has 8 electrons in its outer shell.
 - c. Hydrogen and helium are both metals.
 - d. Hydrogen and helium are both gasses.
- 2. The periodic law states that:
 - a. The periodic table arranges elements into periods and groups.
 - b. The properties of elements recur periodically based on their metallic qualities.
 - c. The properties of elements recur periodically when arranged by increasing atomic mass.
 - d. The properties of elements recur periodically when arranged by increasing atomic number.

The Periodic Table and Atomic Structure

Lesson 2

- 1. Which statements are true concerning elements in the same group of the periodic table? Select **all** that apply.
 - a. They have similar periodic properties.
 - b. They are all metals or nonmetals, but not both.
 - c. They are either all solids or all liquids or all gasses.
 - d. They have the same number of shells of electrons.
 - e. They have the same number of inner core electrons.
 - f. They have the same outer shell electron configuration.

محارس البكالوريا BACCALAUREATE SCHOOLS

2.	The valence electrons of an atom do not experience the full attractive force of protons in the atom		
	nucleus due to the presence of inner core electrons. The reduction in nuclear charge experience		
	valence electrons due to inner core electrons is called the		
	a.	Ionization energy effect.	
	b.	Nuclear charge effect.	
	c.	Periodic law effect.	
	d.	Shielding effect.	
Periodic	Trends		
Lesson 3	3		
1.	Which c	f the following correctly completes the statement:	
	Cations	are always than the parent atom and anions are always than the parent atom.	
	a.	smaller; smaller	
	b.	larger; smaller	
	C.	smaller; larger	
	d.	larger; larger	
2.	Based o	on their definitions, electron affinity could be considered the opposite of	
	a.	Shielding effect.	
	b.	Ionization energy.	
	C.	Nonmetallic character.	

d. Effective nuclear charge.