Final Exam Review

	The octet rule states that atoms tend to form bonds so that each atom has eight electrons in its			
	valence shell.			
	Electron dot structures (lewis structures) show how many atoms share electrons to meet the octet			
	rule.			
	- Be able to draw the correct electron dot structures (lewis structures) for molecular			
	substances [pg.85]		
	Properties of Metals			
	- Ductility: the ability to be drawn into wires			
	- Malleability: the ability to be hammered or pressed into shapes			
	- Have specific crystal structures			
	Properties of Covalent Bonds			
	- Bonds hold the atoms together in discrete molecules			
	- Form when atoms of nonmetals get close enough for their orbitals to overlap			
	- Can be single, double, or triple bonds			
	How do intermolecular forces affect volatility?			
	- Volatility: a measure of how easily a liquid evaporates.			
	- The stronger the intermolecular force , the lower the volatility because the molecules are			
	held together strongly			
	Melting Point and Boiling Point			
	- The stronger the intermolecular force, the higher the melting and boiling points because it			
	takes more energy to separate the molecules.			
	Formation of Ionic Bonds			
	- The resulting cation has a stable octet in it valence shell			
	- The resulting anion has a stable octet in its valence shell			
	- The electrostatic attraction between the positive ion and the negative ion forms an ionic			
	bond			
	Particles of Matter			
	- Matter: anything that has mass and occupies space.			
	- Atoms: the fundamental building blocks of matter.			
	- Element: the simplest form of matter that has a characteristic set of properties. (H, Cl, O)			
	- Molecules: when two or more atoms combine, and are held together by chemical bonds.			
	(NH ₃ , CO ₂ ,CH ₄)			
	Types of Atoms			
	- Atomic Number: the number of protons in the nucleus of an atom.			
	- Mass number: the total number of protons plus neutrons in an atom.			

Ions	
-	Cation: an atom (metal) that loses one or more electrons to form an ion with a net positive
	charge.
-	Anion: an atom (nonmetal) that gains one or more electrons to form an ion with a net
	negative charge.
Isotope	S
-	Atoms that have the same number of protons but different number of neutrons.
Periodic	Trends
-	Atomic Radius: increase down a group, and decreases across a period
-	Ion Size: the radius of the cation is smaller \rightarrow higher Zeff
-	Ion Size: the radius of the anion is bigger \rightarrow lower Zeff
-	Ionization Energy: small atoms tend to have high ionization energies, and large atoms have
	low ionization energies
-	Ionization Energy: increases from left to right across a period, and bottom to top within a
	group [pg.59-60]
-	Electron Affinity: increases from left to right across a period, and bottom to top within a
	group
Calculat	ing Atomic Mass
-	Multiply the mass of each isotope by its natural abundance, expressed as a decimal, and then
	add the product. [pg.19]
Maximu	m number of electrons in an energy level
-	The $maximum\ number$ of electrons that an energy level can hold is given by the formula $2n^2$,
	where n represents the number of the energy level.
-	Example: the third energy level can hold 18 electrons \rightarrow 2(3) ² = 18
Electror	negativity and Bond Polarity [pg.87]
-	The ability of an atom to attract electrons toward itself in a chemical bond.
-	Ionic bonds have an electronegativity difference greater than 2.0
-	A polar covalent bond is a bond in which electrons are shared but not shared equally
	between the atoms. The electronegativity difference of polar covalent bonds is between 0.4
	and 2.0
-	A nonpolar covalent bond is a bond in which the electrons are shared equally. Nonpolar
	covalent bonds have an electronegativity difference of 0.4 or less

** Please study this very. There is a whole question worth 8 points on electronegativity and bond polarity on

your exam **