

Midterm Study Guide

محارس البكالوريا BACCALAUREATE SCHOOLS

Mid-Second Semester Examination

Academic Year 2024-2025

Subject: Math

Grade 10

Ms. Amani Khalifeh

Content: enVision Algebra

Topics Covered

Chapter	Lesson	Pages
Trigonometric Functions	1- Trigonometric Functions and Acute Angles	357-364
	2- Angles and the Unit Circle	365-375
	3- Trigonometric Functions and Real Numbers	376-382

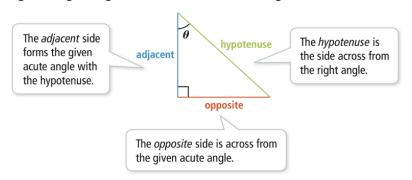
Please study the material listed in the table above with a focus on the points below.

Please use your textbook, notes, and worksheets to study.

Key Topics and Concepts

Lesson 1: Trigonometric Functions and Acute Angles

- Math Literacy and Vocabulary
- Identify the trigonometric ratios
- Write trigonometric ratios
- Use one trigonometric ratio to find another
- Find a missing side length
- Evaluate trigonometric ratios in special triangles
- Explain trigonometric identities


مدارس البكالوريا

BACCALAUREATE SCHOOLS

Trigonometric Ratios

The three sides of a right triangle are referred to as the hypotenuse and two legs.

The Greek letter θ , read "theta", is often used to represent an acute angle in a right triangle. Angle θ is an abbreviation for "angle with measure θ ".

These are the six basic trigonometric functions of the angle θ .

Sine	Cosine	Tangent
$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$	$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$	$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$

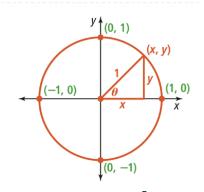
The reciprocal trigonometric functions of the angle θ are formed by exchanging the terms in each ratio.

Cosecant	Secant	Cotangent
$\csc \theta = \frac{\text{hypotenuse}}{\text{opposite}}$	$\sec \theta = \frac{\text{hypotenuse}}{\text{adjacent}}$	$\cot \theta = \frac{\text{adjacent}}{\text{opposite}}$

Lesson 2: Angles and the Unit Circle

- Math Literacy and Vocabulary
- Find the measure of an angle in standard position
- Find reference angles
- Find the coordinates of a point on the unit circle
- Understand radian measure on the unit circle
- Convert between degrees and radians
- Use radians to find arc length

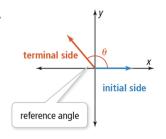

The Unit Circle


The unit circle is a circle that has its center at the origin and has a radius of 1.

In any right triangle formed with the radius as the hypotenuse, the length of the hypotenuse is 1.

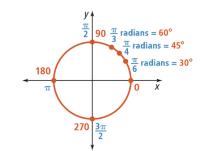
Based on right triangle trigonometry

$$\sin \theta = \frac{y}{1}$$
, or y $\cos \theta = \frac{x}{1}$, or x



مدارس البكالوريا **BACCALAUREATE SCHOOLS**

Angles and the Unit Circle



An angle is in standard position when its initial side is the positive x-axis and its vertex is at the origin.

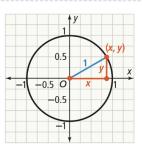
The reference angle is the acute angle formed by the terminal side and the x-axis.

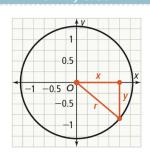
DEGREES AND RADIANS

radians =
$$\frac{\pi}{180}$$
 • degrees

degrees =
$$\frac{180}{\pi}$$
 • radians

Lesson 3: Trigonometric Functions and Real Numbers


- Math Literacy and Vocabulary
- Use reference triangles to evaluate sine and cosine
- Use the pythagorean identity $\sin^2\theta + \cos^2\theta = 1$
- Use the unit circle to evaluate tangents


Trigonometric Functions and the Unit Circle

- Evaluate the reciprocal functions
- Use any circle centered at the origin

A reference triangle is formed using the terminal side of an angle and a perpendicular segment from the terminal point to the x-axis. This can help you find the coordinates of the terminal point on the unit circle.

Trigonometric Functions on the Unit Circle

WORDS

GRAPHS

For an angle with measure θ in standard position with terminal point (x, y) on the unit circle:

$$\sin \theta = y$$
 $\csc \theta = \frac{1}{y}$
 $\cos \theta = x$ $\sec \theta = \frac{1}{x}$

$$\tan \theta = \frac{y}{x} \qquad \cot \theta = \frac{x}{y}$$

For an angle with measure θ in standard position with terminal point (x, y) on any circle:

$$\sin \theta = \frac{y}{r}$$

$$\csc\theta = r \cdot \frac{1}{y}$$

$$\cos \theta = \frac{x}{r}$$

$$\sec \theta = r \cdot \frac{1}{x}$$

$$\tan \theta = \frac{y}{x}$$

$$\cot \theta = \frac{x}{v}$$