

وحارس البكالوريا BACCALAUREATE SCHOOLS

Grade 9th

26th Nov, 2025

Refer to Your Physics Book for the following material

Topic	Details
Displacement and Velocity (p. 5 – 20)	 Position definition Displacement definition Displacement vs. Distance Vector and Scalar Quantities
	 Representing Vector Quantities Adding and Subtracting Vectors Graphical Method Analytical Method
	- Position-Time Graphs
	Velocity and SpeedVelocity-Time GraphsModeling Unifor Motion
Acceleration (p. 21 – 34)	 Acceleration definition Instantaneous Velocity vs. Average Velocity Position-Time and Velocity-Time graphs in case of changing velocity (acceleration) Constant acceleration Calculations and formulas Solving Non-Uniform Problems using motion equations of constant acceleration Free falling objects
Projectile Motion (p. 35 – 43)	 Representing velocity in 2D-Motion Adding Velocities in 2D Graphing Projectile Motion Modeling Projectile Motion Solving Projectile Motion by splitting into two dimensions.
Force, Mass and Acceleration (p. 52 – 64)	Newton's first lawMass and Inertia

محارس البكالوريا BACCALAUREATE SCHOOLS

Grade 9th

26th Nov, 2025

	 Force cause acceleration Newton's second law Apply Newton's 2nd law Newton's 3rd law Actions and Reactions Freebody Diagrams Modeling Forces Solving Force Problems
Types of Forces (p. 65 – 75)	 Contact and Non-Contact Forces Weight Tension Force Friction Force Normal Force 2D Force Problems

- Priority is to refer to Your NOTES and Worksheets and Quizzes.
- Please bring your own Calculator to the exam.
- Physics classes between 7th and 11th of December will be dedicated to review and any questions or explanations regarding the material.

NONZEDGE 15 POWER Grade 9th

وحارس البكالوريا BACCALAUREATE SCHOOLS

26th Nov, 2025

№ 1. MODELING MOTION

1.1 Displacement & Velocity

Displacement

- **Definition:** How far you are from your starting point *and in what direction*.
- It is a vector (has magnitude + direction).
- Formula:

$$\underline{\mathsf{Displacement}} = x_{\mathsf{final}} - x_{\mathsf{initial}}$$

Example:

You walk +5 m (forward), then -2 m (backward). Total displacement = 5 - 2 = +3 m forward.

Velocity

- Velocity = speed + direction
- Average Velocity Formula:

$$\underline{v = \frac{\text{displacement}}{\text{time}}}$$

Example:

A car moves 20 m east in 5 seconds.

$$v = \frac{20}{5} = 4 \text{ m/s east}$$

1.2 Acceleration

- Acceleration tells you how velocity changes over time.
- Formula:

$$\underline{a} = \frac{v_f - v_i}{t}$$

مدارس البكالوريا

26th Nov, 2025

BACCALAUREATE SCHOOLS

Grade 9th

Units: m/s²

Examples:

If a bike speeds up from 2 m/s to 10 m/s in 4 s:

$$a = \frac{10 - 2}{4} = 2 \text{ m/s}^2$$

If an object slows down (decelerates), acceleration will be negative.

1.3 Free-Falling Objects

- Free-fall happens when gravity is the only force acting.
- On Earth:

$$g = 9.8 \,\mathrm{m/s}^2 (\mathrm{downward})$$

Objects in free fall speed up as they fall.

Key Free-Fall Equations (no air resistance):

$$\frac{v = gt}{d = \frac{1}{2}gt^2}$$

Example:

How far does a rock fall in 2 seconds?

$$d = \frac{1}{2}(9.8)(2^2) = 19.6 \,\mathrm{m}$$

1.4 Projectile Motion

Projectiles have two motions happening at the same time:

- 1. Horizontal motion:
 - Constant velocity
 - No horizontal acceleration

مدارس البكالوريا **BACCALAUREATE SCHOOLS**

26th Nov, 2025

Grade 9th

2. Vertical motion:

o Accelerated by gravity (9.8 m/s² downward)

Example:

A ball is thrown horizontally at 8 m/s off a 10 m cliff.

Horizontal distance:

Use: d = vt

Vertical drop:

Use:
$$d = \frac{1}{2}gt^2$$

The motions don't affect each other.

Ջ 2. FORCES & NEWTON'S LAWS

2.1 Force, Mass, and Acceleration (Newton's 2nd Law)

Newton's Second Law:

F = ma

- F: Net force (N)
- m: Mass (kg)
- a: Acceleration (m/s²)

Example:

A 3 kg box accelerates at 4 m/s².

$$F = (3)(4) = 12 \text{ N}$$

2.2 Newton's Three Laws (Quick Review)

1 Newton's First Law: Inertia

• An object stays at rest or moves at constant velocity unless a net force acts on it.

2 Newton's Second Law: F = ma

- More force → more acceleration.
- More mass \rightarrow harder to accelerate.

مدارس البكالوريا **BACCALAUREATE SCHOOLS**

26th Nov, 2025

Grade 9th

3 Newton's Third Law: Action–Reaction

- For every action, there is an equal and opposite reaction.
- Example: You push on a wall \rightarrow the wall pushes back with equal force.

2.3 Types of Forces

<u>Understanding common forces is crucial for drawing free-body diagrams.</u>

Weight (Gravity)

- Force pulling objects downward due to gravity.
- Formula:

$$W = mg$$

Always acts straight down.

Example:

Mass = 5 kg

W = (5)(9.8) = 49 N downward

Normal Force

- Support force from a surface.
- Acts perpendicular to the surface.
- Balances weight on flat ground.

Tension Force

- Force in a rope, string, or cable.
- Pulls along the direction of the rope.

وحارس البكالوريا BACCALAUREATE SCHOOLS

26th Nov, 2025

Grade 9th

Friction Force

- Opposes the motion between surfaces.
- Two types:
 - o **Static friction:** resists motion before movement starts.
 - o Kinetic friction: resists motion while sliding.

Example:

A box is pushed right.

• Friction acts **left**.

A Quick Practice Questions

- 1. A car changes velocity from 10 m/s to 22 m/s in 6 seconds.
 - o What is its acceleration?
- 2. A ball is dropped from rest.
 - o How fast is it going after 3 seconds?
- 3. Calculate the weight of a 12 kg dog.
- 4. A rope pulls a sled with **30 N** of tension, causing a **3 m/s²** acceleration.
 - o What is the sled's mass?
- 5. Identify the forces acting on a book resting on a table.

Tips for Studying for the Final

- Focus on graphs: position vs time, velocity vs time.
- Practice drawing motion diagrams.
- Always identify forces before solving.
- Break projectile motion into horizontal vs vertical parts.
- Keep units consistent!