

Student's Name: _____

محارس البكالوريا BACCALAUREATE SCHOOLS

Grade 11th

13th November, 2025

Q1) A new solar panel system is installed on a school rooftop. Due to dust buildup and gradual wear, the panel's energy output (in kWh per day) decreases over time.

- On installation day, the output is 60 kWh/day.
- After 30 days, the output drops to 54 kWh/day, and after 90 days, it's 42 kWh/day.

Assume the decrease in energy output follows a quadratic pattern over time.4

- a. Find a quadratic equation $E(t) = at^2 + bt + c$ modeling the energy output, where t is days since installation.
- b. Predict after how many days the output will drop below 30 kWh/day.
- c. Interpret what this means in terms of maintenance scheduling.

Q2) A ride-share company charges fares based on both time and distance.

- For the first 5 km, the cost increases linearly at a rate of 2.5 currency units per km.
- Beyond 5 km, the company adds a congestion fee that grows quadratically with distance due to traffic conditions.

The additional cost is $0.1(x-5)^2$, where x is the total distance traveled (km).

- a. Construct a **piecewise function** for the total cost C(x).
- b. Graph the function for $0 \le x \le 15$.
- c. Find the distance at which the **rate of increase** in cost (the derivative) first exceeds **4 currency units per km**, and explain its meaning for long trips.

Q3) A farmer has 800 meters of fencing and wants to build a rectangular pen divided into two equal smaller pens by one internal fence parallel to one side.

The area of the total enclosure depends on how she allocates the fencing.

- a. Express the total area Aas a quadratic function of the width w.
- b. Determine the dimensions that maximize the area.
- c. Explain how the result would change if one internal fence were removed.

Student's Name:

محارس البكالوريا BACCALAUREATE SCHOOLS

Grade 11th

13th November, 2025

Q4) An engineer is designing a parabolic section of a roller coaster.

- The car enters the section at ground level at x=0, rises to a maximum height of 30 meters at x=50meters, then descends back to ground level at x=100meters.
- a. Write the quadratic function h(x) representing the height of the car.
- b. Determine the slope (rate of ascent/descent) at x=25 and x=75.
- c. If the car must never exceed a **slope magnitude of 1.2**, determine if this design meets the safety requirement.

Q5) A tech startup's monthly revenue and costs are modeled as follows:

- Revenue grows **linearly** with time: R(t) = 50,000t + 80,000, where t is in months.
- Costs grow quadratically due to scaling expenses: $C(t) = 10,000t^2 + 60,000$.
- a. Find the month when the company breaks even.
- b. Determine the time interval during which the company operates at a loss.
- c. Discuss how changing the rate of revenue growth would shift profitability (qualitatively).