

GRADE 11 ICT – Final STUDY GUIDE

(Covers Python + Unit 2 Lesson 1)

PART 1: PYTHON BASICS

1. Variables and Data Types

A variable is a container used to store information in a program.

Examples:

name = "Ahmad" age = 15

Rules for naming variables:

- Only letters, numbers, and underscore
- Cannot start with a number
- Cannot contain spaces
- Cannot use Python keywords (if, for, print, etc.)
- Use clear names (student_name, total_price)

Common data types:

- int: whole numbers (1, 20, 300)
- float: decimal numbers (2.5, 0.1, 89.99)
- str: text inside quotes ("hello")
- list: multiple values in brackets

Check type:

type(age)

2. Strings

Strings are text written inside quotation marks.

Example:

message = "Hello"

Useful string methods:

- upper(): converts to uppercase
- lower(): converts to lowercase

- title(): capitalizes each word
- strip(): removes spaces from both sides
- lstrip(): removes left spaces
- rstrip(): removes right spaces

Example:

```
" hello ".strip() # "hello"

"world".upper() # "WORLD"
```

String formatting (f-strings):

```
name = "Lana"
print(f"My name is {name}")
```

Special characters:

- \n = new line
- \t = tab

3. Numbers and Operators

Number types:

- int
- float

Arithmetic operators:

- addition
- subtraction
- o multiplication
- / division
- % remainder
- ** exponent (power)

Examples:

4. Input from the User

The input() function allows the user to enter data.

Example:

```
name = input("Enter your name: ")
```

Input is always a string. To convert:

```
age = int(input("Enter age: "))
price = float(input("Enter price: "))
```

5. Conditionals (if statements)

Comparison operators:

- == equal
- != not equal
- greater
- < less</p>
- = greater or equal
- <= less or equal</p>

Basic if:

```
if age >= 18:
    print("Adult")
```

If-else:

```
if grade >= 50:
    print("Pass")
else:
    print("Fail")
```

If-elif-else:

```
if score >= 90:
    print("A")
elif score >= 80:
    print("B")
else:
    print("C or below")
```

Logical operators:

- and
- or
- not

if color == "red" or color == "blue":
 print("Primary color")

Check membership:
if "apple" in fruits:
 print("Found")

6. Loops

For loop

Used when repeating a known number of times.

Example:
for i in range(5):
 print(i)

While loop

print(i)

Runs while a condition is true.

Range with start and end:

for i in range(1, 6):

Example:


```
count = 1
while count <= 5:
  print(count)
  count += 1</pre>
```

Nested loops

```
A loop inside a loop.

for i in range(3):

for j in range(2):

print(i, j)
```

7. Using Google Colab

Google Colab allows:

- Running Python online
- No installation needed
- Automatic saving in Google Drive
- Suitable for school assignments

Unit 2 – Lesson 1: Al & Data Science + Image Processing with Pillow

PART 1 — AI IN SOFTWARE AND HARDWARE

1. How Al Appears in Devices

Al is integrated into many devices you use daily (phones, speakers, home systems). Devices use both:

- Software components (algorithms, apps, voice recognition)
- Hardware components (sensors, microphones, cameras)

These two work together to make devices smart.

Examples from the text:

- Smart speakers understand voice commands
- Phones detect faces
- Home systems automate lighting, security, and temperature

2. Al Applications and Their Evolution

a. Smart Home Systems

Smart homes include:

- Smart locks
- Smart thermostats
- Environmental sensors
- Automatic lighting
- Motion detectors
- Security cameras

These devices communicate with each other using AI and DS.

Al allows the system to:

- Detect unusual behavior
- Control lights and temperature
- Recognize faces to unlock the door (Face ID)
- Send security alerts
- Reduce energy use by learning habits

b. Al in Face Recognition

Smartphones scan the user's face using Al The system analyzes:

- Patterns
- Landmarks
- Depth
- Unique features

If the match is correct \rightarrow the phone unlocks.

This increases:

- Privacy
- Security
- User convenience

c. Al in Voice Assistants

- Natural language processing
- Machine learning models

They understand commands such as:

- Turning off lights
- Playing music
- Checking the weather
- Setting reminders

d. Al in Factories and Industry

- Automated assembly lines
- Robots
- Quality control
- Predictive maintenance

Al helps reduce human errors and increases efficiency.

e. Al in Healthcare

- Al analyzes medical images like CT scans and MRIs
- Detects diseases earlier than humans
- Helps doctors diagnose accurately

This improves healthcare decision-making.

PART 2 — AI VS NON-AI FEATURES

Examples of Al-related smartphone features:

- Face recognition
- Intelligent photo enhancement
- Auto-categorizing images
- Predictive typing
- Battery optimization
- Voice assistant behavior

Examples of non-Al features:

- Basic calling
- Simple texting
- Standard hardware functions
- No learning ability

- Using a smart lock using facial recognition → AI
- Detecting defects in a manufacturing plant → AI
- Searching with Google Lens → AI
- Using a calculator → not Al
- Sending a normal SMS → not AI

PART 4 — BASIC COMPUTER VISION USING PILLOW (PIL)

1. Loading Images with Pillow

To use Pillow:

from PIL import Image

To open an image:

image = Image.open("image.jpg")

The image appears in the output.

2. Exploring Image Properties

Using attributes:

print(image.size) # width, height

print(image.format) # JPEG, PNG...

print(image.mode) # RGB, L, etc.

Width: 1000

Height: 667

Format: JPEG

Mode: RGB

3. Image Preprocessing

Preprocessing prepares images for analysis

a. Converting to Grayscale

gray = image.convert("L")

This removes color and keeps intensity only.

Uses:

- Easier edge detection
- Reducing data size

b. Resizing Images

Important for ML models that require fixed dimensions.

Example from page 10:

resized = image.resize((300, 100))

c. Rotating Images

rotated = image.rotate(45)

You can rotate to any angle.

4. Edge Detection Using Pillow

Edge detection identifies boundaries and outlines in an image.

It shows sharp changes in brightness.

To do this, import Pillow's built-in filter:

from PIL import ImageFilter

edges = image.filter(ImageFilter.FIND_EDGES)

KEY TERMS (FOR EXAMS)

- 1. **Al (Artificial Intelligence):** Machines performing tasks that need human intelligence.
- 2. **Data Science:** Using data to extract meaningful patterns.
- 3. **Smart Home:** Home using sensors and AI to automate actions.
- 4. Face Recognition: Al technique to identify people from facial features.
- 5. **Pillow (PIL):** Python library for image processing.
- 6. **Grayscale:** Image with shades of gray only.
- 7. **Resizing:** Changing image dimensions.
- 8. Edge Detection: Identifying boundaries in an image.
- 9. **RGB:** Color mode (Red, Green, Blue).
- 10. Format: Type of image (JPEG, PNG...).