
- 1. Which action is **not** necessary for a successful reaction?
 - A. Molecules must collide in order to react.
 - B. Molecules must move slowly to collide, or they bounce off one another.
 - C. Molecules must collide with proper orientation.
 - D. Molecules must collide with sufficient energy.
- 2. Label the enthalpy diagram for the reaction:

$$4FeO(s) + O_2(g) \longrightarrow 2Fe_2O_3(s) + 561 \text{ kJ}$$

3. Choose the words to finish the sentence.

The enthalpy change of a reaction is the difference in the energy released to

the surroundings in bond _____ and the energy consumed from the surroundings in bond _____ during a chemical reaction.

4. How much heat is absorbed when 2.8 mol of NH_4NO_3 are dissolved in water? The heat of the solution of NH_4NO_3 is 25.4 kJ/mol.

5 How many moles of $CaCl_2$ must be dissolved in water to produce 100 kJ of heat? The heat of the solution for $CaCl_2$ is -82.8 kJ/mol.

6. Choose	the words to finish	the sentence.
If 22 kJ of	energy are provide	d to 16 g of ammonia (NH ₃), ammonia will change its phase from
	to	Δ H $_{ ext{fus}}$ of ammonia is 5.65 kJ/mol and Δ H $_{ ext{vap}}$ of ammonia is 23.4
kJ/mol.		

- 7. Classify these reactions as exothermic or endothermic. Place each reaction into the correct box.
 - burning gasoline
 - reactions inside a chemical cold pack
 - photosynthesis, where plants use sunlight and carbon dioxide to produce sugar and oxygen
 - adding sulfuric acid to water, which gives off heat

Exothermic	Endothermic

8. Use Hess's law to calculate the value of ΔH for the equation $2Fe(s)+1\frac{1}{2}O_2(g)\to Fe_2O_3(s)$.

Use these equations to help you:

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g) \Delta H = -26.74 \text{ kJ}$$

$$CO(g) + \frac{1}{2} O_2(g) \rightarrow CO_2(g) \Delta H = -283.0 \text{ kJ}$$

A. -875.74 kJ/mol

C. 309.74 kJ/mol

B. 256.26 kJ/mol

D. 822.26 kJ/mol

- 9. If heat is released by a chemical system, which statement is true?
 - A. An equal amount of heat is absorbed by the surroundings.
 - B. An equal amount of heat is released by the surroundings.
 - C. An equal amount of heat is released by the universe.
 - D. An equal amount of heat is absorbed by the universe.

10. This reaction was used to fuel the rockets in the Apollo mission landing module:

$$2N_2H_4(I) + N_2O_4(I) \longrightarrow 3N_2(g) + 4H_2(g) \Delta H = -1049 \text{ kJ}$$

How many kilojoules of energy are produced when 5.40 g of N₂O₄ react with excess N₂H₄?

- A. -177.02 kJ
- B. -61.6 kJ
- C. 61.6 kJ
- D. 177.02 kJ
- 11. Hess's law states that change in enthalpy of a chemical reaction is independent of the route by which chemical reactions take place.

Which statement summarizes the conditions necessary for Hess's law?

- A. The initial conditions of the reactions are the same.
- B. The final conditions of the reaction are the same.
- C. The initial and final conditions of the reactions are the same.
- D. The conditions in the intermediate steps are the same.
- 12. The heat of sublimation of dry ice (solid CO_2) is 25.2 kJ/mol. How many grams of water at 0°C would be frozen by the complete sublimation of 48.0 g of dry ice dropped into water? The heat of fusion of water is 6.01 kJ/mol.
 - A. 4.57 g
 - B. 27.5 g
 - C. 48.0 g
 - D. 82.3 g
- 13. Which statement **best** explains activation energy?
 - A. the energy required to break bonds in the product molecules
 - B. the minimum energy needed to convert reactants into the activated complex
 - C. the energy required to make molecules collide
 - D. the energy required to form bonds in the products